WAP手机版 RSS订阅 加入收藏  设为首页
彩票
当前位置:首页 > 彩票

深度学习在推荐系统中的最新应用

时间:2019/9/12 17:35:11  作者:  来源:  浏览:0  评论:0
内容摘要: 应用于广告展示的推荐系统面临的一个重要难点是,由于季节性、广告活动的变化和其他因素,广告特征分布和点击率(click through rate,CTR)会随着时间而发生巨大的变化。解决这一问题的主要策略是不断地基于新数据连续训练预测模型。然而一些应用场景中数据标签仅存在一段时间...
    应用于广告展示的推荐系统面临的一个重要难点是,由于季节性、广告活动的变化和其他因素,广告特征分布和点击率(click through rate,CTR)会随着时间而发生巨大的变化。解决这一问题的主要策略是不断地基于新数据连续训练预测模型。然而一些应用场景中数据标签仅存在一段时间且会出现一定的随机延迟,这些延迟的反馈标签对连续训练中的数据新鲜度提出了挑战:新数据在被训练算法接收时可能没有完整的标签信息。一个简单的解决这个问题的方案是除非用户给数据打正标签,否则任何一个数据点都是一个负样本。这种方案往往带来较低的 CTR,从而导致用户体验差和性能差。

本文的重点是找到推荐系统中损失函数和深度学习模型的最佳组合,使其在存在标签延迟反馈的情况下,能够从连续数据流中进行有效的大规模学习。本文考虑两种模型:一是简单 Logistic 回归模型,该模型应用简单、性能良好以及易于接收和处理在线训练的新训练样本,在展示广告中得到了广泛的应用。二是广度-深度(wide-deep)模型,该模型能够有效解决推荐系统的特征复杂性和多样性问题。此外,本文考虑五种损失函数:对数损失、假阴性(fake negative,FN)加权损失、FN 校准、正未标记损失和延迟反馈损失。

相关评论

本类更新

本类推荐

本类排行

本站所有站内信息仅供娱乐参考,不作任何商业用途,不以营利为目的,专注分享快乐,欢迎收藏本站!
所有信息均来自:百度一下 (现金网游戏)
鲁icp备13032110号-1